

Walking Speed: Predictive

- Future health status (Studenski 2003; Purser 2005)
- Functional decline (Brach 2002)
 - Hospitalization (Montero-Odasso 2005)
 - Discharge location (Salbach 2001; Rabadi 2005)
 - Mortality (Hardy 2007)
- Functional & Physiological changes (Perry 1995)
 - Potential for rehabilitation (Goldie 1996)
 - Aids in prediction of:
 - Falls (Guimaraes 1980)
 - Fear of falling (Maki 1997)

Walking Speed: Predictive

- Example:
 - WS predicts the post hospital discharge location 78% of the time in acute stroke
 - the addition of cognition or initial FIM scores **does not** significantly strengthen the ability of defining if a patient will be discharged to home or to a skilled nursing facility (Rabadi 2005)

Admission Ambulation Velocity
Predicts Length of Stay and Discharge
Disposition Following Stroke in an
Acute Rehabilitation Hospital

Mehrooz H. Rabadi and Alan Blau
Neurorehabilitation and Neural Repair 19(4); 2005

Walking Speed

- Progression of WS has been linked to
 - clinical meaningful changes in **quality of life** (Schmid 2007)
 - in home & community walking behavior. (Bowden 2008)
- Due to its ease of use (Guralnik 2000) & psychometric properties, WS has been used as a **predictor & outcome measure** across multiple diagnoses.
 - Older adults (Studenski 2003) (Perera 2006)
 - Incomplete Spinal Cord Injury (Behrman 2005)
 - Frail Elderly (Purser 2005)
 - Hip Fracture (Palombaro 2006)
 - Pain & LBP (Lee 2007)
 - Children (Meyer-Heim 2007)
 - Stroke (Bowden 2008)
 - Parkinson's Disease (Rochester 2009)

Contributors to Walking Speed

1. Individual's health status (Lord 2005)
2. Motor control (Gerin-Lajoie 2006)
3. Muscle performance & Musculoskeletal condition (Buchner 1996; Ostchega 2004)
4. Sensory & perceptual function (teVelde 2003)
5. Endurance & habitual activity level (Langlois 1997)
6. Cognitive status (Persad 2008)
7. Motivation & mental health (Lemke 2000; Fredman 2006)
8. Characteristics of the environment in which one walks (Robinett 1988)

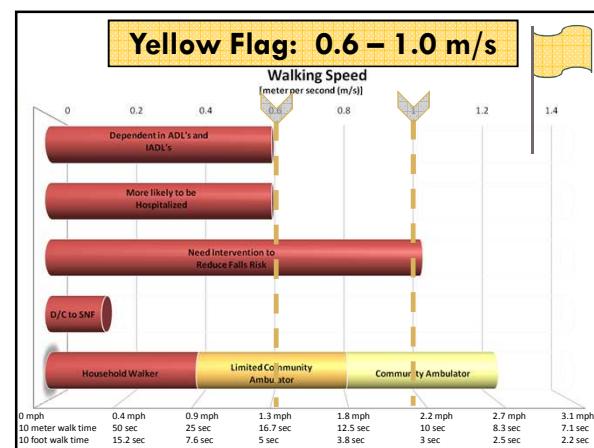
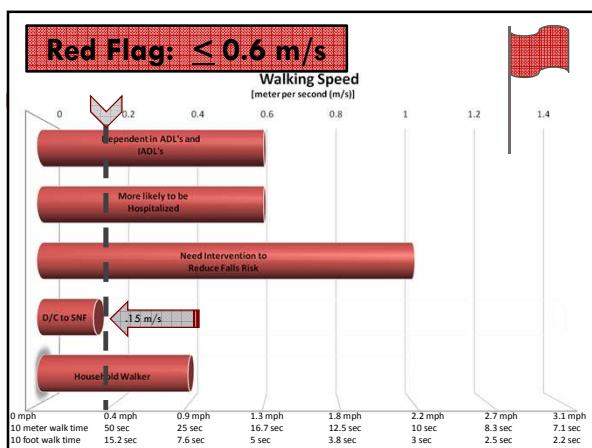
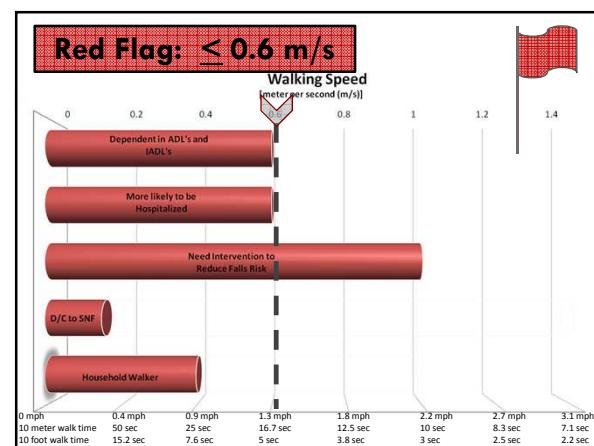
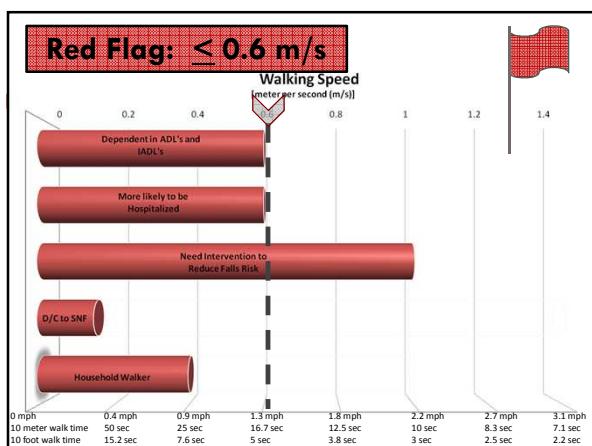
NIH Toolbox
Assessment of Neurological and Behavioral Function

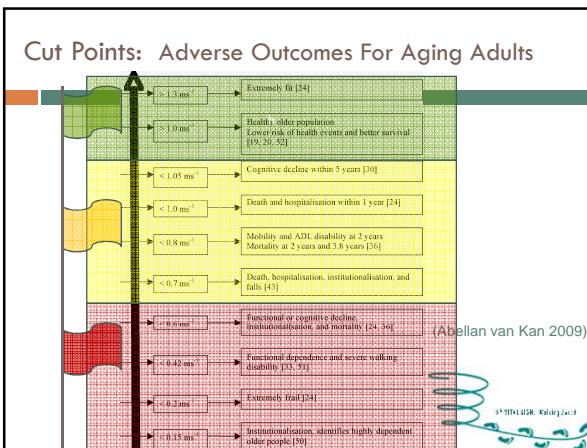
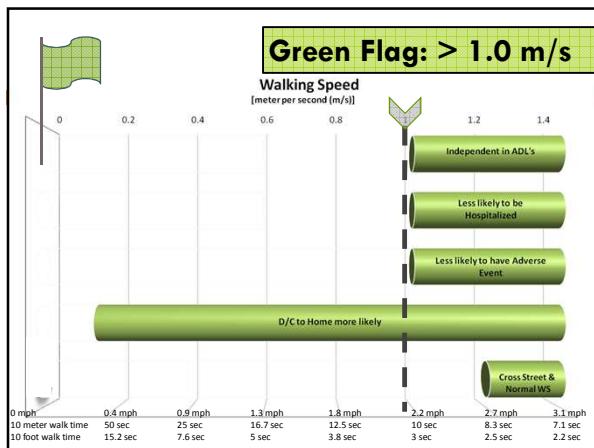
- Chosen by a panel of experts at NIH as the standardized assessment to measure locomotion www.nihtoolbox.org

Motor Function and the NIH Toolbox

David Reuben, MD, University of California - LA
Michael J. Harkema, PhD, University of Colorado - Denver
Many functions, the ability to physically perform tasks, is integral related to daily functioning and quality of life. Accordingly, assessment of motor function has been an important area of study. The NIH Toolbox team identified the components of motor function to be measured in the Toolbox: a Motor Domain Team was created consisting of David Reuben, MD, Domain Co-leader; W. Zev Rymer, PhD, Motor Function Co-leader; Michael Harkema, PhD, Motor Function Manager; Jin-Shi Li, PhD, CTR/L Domain Co-Manager; and Isha Wang, PhD, Scientist.

The Motor Team began work with literature reviews, a survey of 147 relevant studies, and discussions with a panel of experts to develop a process and early findings. Through this process, the team identified five sub-domains that are critical for optimal functioning: locomotion, non-weight bearing balance, dexterity, strength, and endurance. The team then developed a process to identify the best instruments to measure each of these sub-domains that would provide robust measurement in each of these areas. This process was guided by ground rules established by the National Institutes of Health. First, instruments were to be objective (performance-based) rather than self-report. Second, instruments needed to be applicable to all age groups from 3 years upward. (read page 2)





EMOTION
Sensation
Cognition
MOTOR

Walking Speed as a Vital Sign

Vital sign is:	Walking speed is:
<ul style="list-style-type: none"> □ Summary indicator that can predict future events & reflect multiple underlying physiological processes, reflects overall health of organism (Studenski 2003, 2009) 	<ul style="list-style-type: none"> □ A summary indicator capable of predicting future events as a result of multiple physiologic inputs will be demonstrated
<ul style="list-style-type: none"> □ In general, there are normal & abnormal ranges 	<ul style="list-style-type: none"> □ Ranges of normal & abnormal values will be defined
<ul style="list-style-type: none"> □ Differential diagnosis of an abnormal vital sign is based on contributing systems e.g. causes of hypertension 	<ul style="list-style-type: none"> □ A differential diagnosis, based on contributing systems, can be developed

2

Community Function:

Example Task:

- Assess Traffic & Step off curb (1.5 sec)
- Cross Traffic Lanes (4 m/lane)
- Step up onto sidewalk (1.5 sec)

To safely cross:

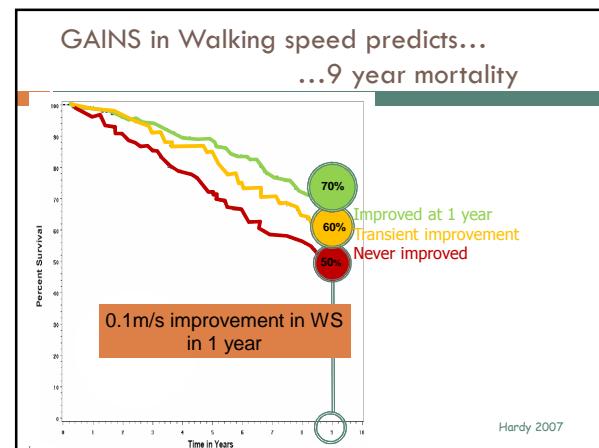
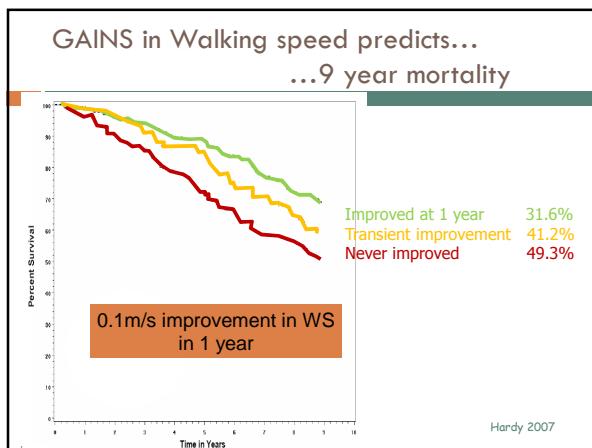
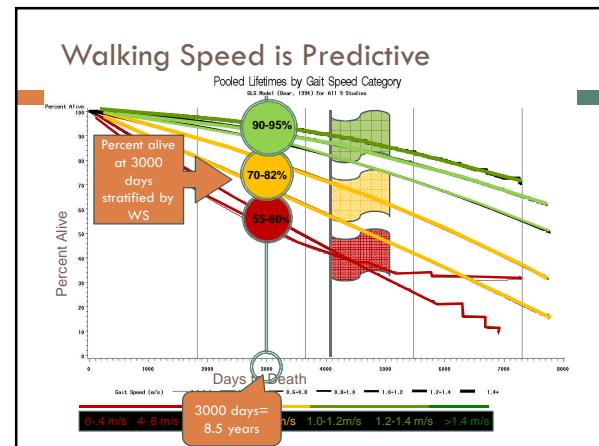
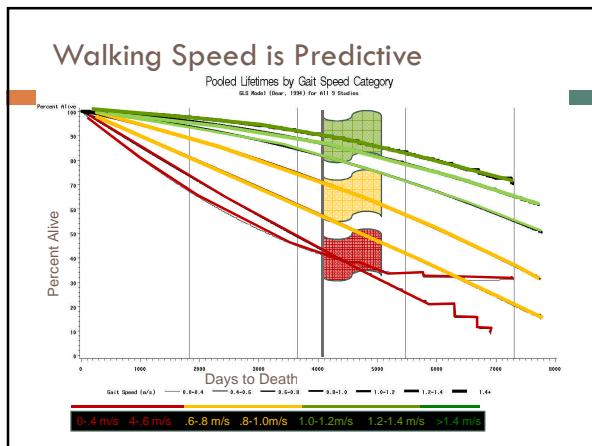
- Critical speed = total distance / available time

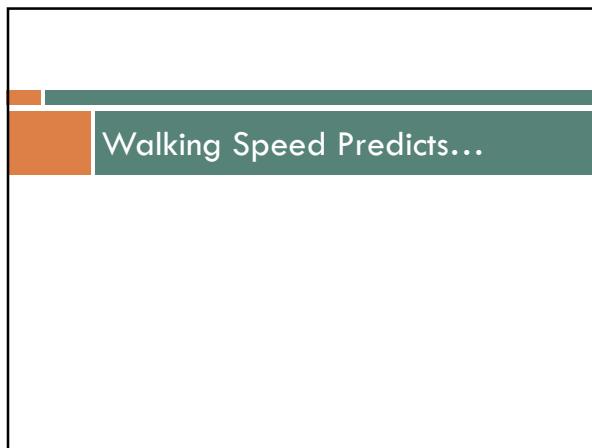
Crossing the Street:

**(10 sec signal) – (3 sec for curbs) = 7 sec
2 traffic lanes (8 m)
Critical speed: 1.14 m/sec**

**(15 sec signal) – (3 sec for curbs) = 12 sec
4 traffic lanes (16 m)
Critical speed: 1.33 m/sec**

Considerations:


- Curb height / curb cuts
- Condition of road / type of surfaces
- Lighting
- Gradients
- Weather conditions
- Other pedestrians
- Distractions (Ipods, conversation)
- Additional Tasks (umbrellas, luggage, groceries...)
- Footwear
- Need to scan environment
- Use of assistive devices
- “Culture” of community

Finnis, 2008

Walking Speed and Function

Walking speed		METS	Function
m/sec	mph		
.67	1.5	< 2	self care
.89	2.0	2.5	household activities
1.11	2.5	3.0	carry groceries, light yard work
1.33	3.0	3.5	climb several flights of stairs

N= 492 elders (Studenski ,2003)

Walking Speed Predicts... ...Health Status and Hospital Costs

Differences of 0.10 m/sec at hospitalization

- Poorer health status (SF-36)
- Poorer Physical Functioning
- More disabilities
- More rehab & med-surgical visits
- Longer hospital stays
- Higher inpatient costs

Improvements of 0.10 m/s at 1 year

- Improved health status, less ADL & IADL disability, better physical function
- Fewer hospitalization days
- 1 year cost reductions of ~\$1,188 per 0.10 m/s improve

Perseur 2005

Walking Speed Predicts... ...6 month mortality

	Patients n (%)	Adjusted OR
Overall	309	
Gait \leq 0.65 m/s	156 (50)	22 (14.1%) 3.8 (1.1, 13.1)
Grip \leq 25 kg	155 (50)	20 (12.9%) 2.7 (0.7, 10.0)
Stands \leq 7 times	172 (56)	21 (12.2%) 1.5 (0.5, 5.1)
Fried Frail	84 (27)	10 (11.9%) 1.9 (0.6, 6.1)

Final models adjusted for age, gender, race, education, diabetes, CHF, number of comorbid conditions, creatinine, smoking, cognitive impairment, depression, systolic blood pressure, self-rated health, primary treatment regimen, & number of disabilities.

Walking Speed Predicts... ...1 year health outcomes

% patient declines in one year stratified by WS

Studenski 2003

Walking Speed Varies By... ...Age, Gender, & Anthropometrics

Walking Speed by Gender & Age

Self selected walking speed categorized by gender & age : 6-12 & teens (Waters, Lunsford et al. 1988); 20s-50s (Bohannon 1997); & 60' s-80' s (Bohannon 2008)

Walking Speed Varies By... ...Age, Gender, & Anthropometrics

Chui Lusardi Steffen Bohannon

How to Measure Walking Speed

Feasibility of Use

Several standardized assessments reliably predict function & health related events:

- Yet, consistent use in PT & other clinical settings is not widely practiced (Duncan 2000)
- Insufficient time
- Inadequate equipment or space
- Lack of knowledge in interpreting the assessment (Cesari 2005)

Factors contributing to non-use of standardized assessments include:

Feasibility of Use

Feasibility

1. Is the test **safe**?
2. Is it **cost effective**?
3. How **easy** is the test to administer?
4. How **easily** are the results of the test **graded** & **interpreted**?

Walking Speed

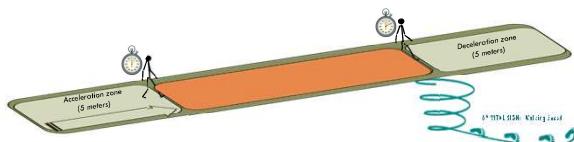
1. **Safe**
2. Adds no significant **cost** to an assessment
3. **Easy** to Administer
 - Requires no special equipment
 - Requires little additional time
 - Administered in about 2 minutes (Studenski 2003)
4. Easy to calculate (distance/time)
 - Easy to **interpret** based on published norms
 - (Oberg 1993; Bohannon 1997; Steffen 2002; Lusardi 2003)

Assessment

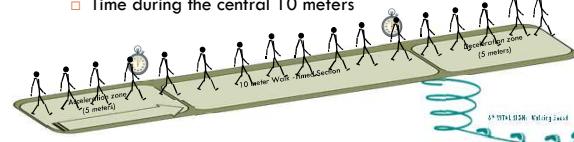
- Walking speed can be quickly & accurately assessed in the majority of PT practice settings

- home care
- subacute & acute rehabilitation facilities
- long term care facilities
- out-patient offices
- schools
- community wellness/ screening activities (Bohannon 2009)

Assessment


- Most normative values are based on measuring the middle 2/3rds of a walkway (Bohannon 2008)
- Timing 3 times provides a more accurate estimate than a single trial (Steffen 2002; Lusardi 2003; Bohannon 2009)

- However, measurements of WS are **highly reliable** regardless of:
 - the method for measurement
 - different patient populations (Bohannon 1997; Steffen 2002)


10 Meter Walk Test

- Reliable, inexpensive method (Perera 2006)
- 20 meter path
- Central 10 meters being the timing area

10 Meter Walk Test

- Reliable, inexpensive method (Perera 2006)
- 20 meter path
- Central 10 meters being the timing area
- Start your patient at the beginning of the 20 meter line
- Ask pt to walk "at a comfortable pace" to the end line
 - "Walk at a comfortable pace as if you are walking in the park"
- Time during the central 10 meters

4 Meter Walk Test

- Reliable
 - Recommended as most feasible
- 6 meter path
 - Central 4 meters being the timing area

4 Meter Walk Test

Quick Gait Speed Test		Conversion	
Meters/second	= 4/time to walk	Meters/second	Miles / hour
3 seconds	1.3 m/s	0.4	0.9
4 seconds	1.0 m/s	0.6	1.3
5 seconds	0.8 m/s	0.8	1.8
6.7 seconds	0.6 m/s	1.0	2.2
		1.2	2.7
		1.4	3.1

Instrumentation to Measure WS

6 minute walk

- Most widely used long walk
 - widely accepted for congestive heart failure & COPD
- Recommended cutoff is 350 meters
 - equivalent to gait speed of around 1.0 m/s
- Possible that endurance is incorporated into usual walking speed
 - individuals self select their personal optimal walking speed
 - which is adjusted for their aerobic capacity & their energy cost (Studenski 2009)

Efforts to clarify & standardize measures

- Task Force reported variations in technique (Abellan van Kan 2009)
 - Including starting conditions
 - Length of the walk
 - Incorporate other tasks or instructions
 - Example: the Timed Up & Go includes a chair rise & turn
 - Speed of requested walk (fast as possible)
 - Not yet known whether or how these modifications provide additional value to usual WS
- Suggestion:**
 - 4 meter walk at self selected speed

Test-retest reliability

Test-retest reliability coefficients reported in the literature range from:

0.929 (Evans 1997) to 0.97 (Stephens 1999)

- Variability related to:
 - Method used to measure
 - Distance measure
 - Diagnosis
 - Use of assistive device
 - Age
 - Anthropometrics (primary leg length)
 - Self-selected or fast WS

References

1. NIH Toolbox: Assessment of Neurological and Behavioral Function
2. Abellán van Kan G, Rolland Y, Andrieu S, Bauer J, Beauchet O, Bonnefoy M, Cesari M, Donini LM, Gillette Guyomé S, Inzitari M, Nourhashemi F, Onder G, Ritz P, Salva A, Visser M, Vellas B. Gait Speed at Usual Pace as a Predictor of Adverse Outcomes in Community-Dwelling Older People An International Academy on Nutrition and Aging (IANA) Task Force. *J Nutr Health Aging* 2009;13(10):881-889.
3. Behrman AL, Lawless-Dixon AR, Davis SB, Bowden MG, Nair P, Phadke C, Hannold EM, Plummer P, Harkema SJ. Locomotor training progression and outcomes after incomplete spinal cord injury. *Phys Ther* 2005;85(12):1356-1371.
4. Bohannon R. Comfortable Walking Speed: Norms for Adults derived Using Meta-Analysis
5. Bohannon R. Population Representative Gait Speeds and its Determinants. *J Geriatric Phys Ther* 2008b;31(2):49-52.
6. Bohannon R. Measurement of Gait Speed of Older Adults is Feasible and Informative in a Home-Care Setting. *J Geriatr Phys Ther* 2009;32(1).
7. Bohannon RW. Comfortable and maximum walking speed of adults aged 20-79 years: reference values and determinants. *Age Ageing* 1997;26(1):15-19.
8. Bowden M, Balasubramanian C, Behrman A, Kutz S. Validation of a speed-based classification system using quantitative measures of walking performance poststroke. *Neurorehabil Neural Repair* 2008;22(6):672-675.